BUSINESS MATHEMATICS

Paper: BC-102

Time : Three Hours]
[Maximum Marks : 80

Note : Attempt five questions in all, selecting atleast one question but not more than two from each unit. All questions carry equal marks.

नोट: कुल पांच प्रश्न कीजिए। प्रत्येक इकाई से कम-से-कम एक अधिकतम दो प्रश्न कीजिए। सभी प्रश्नों के अंक समान हैं।

UNIT-I (इकाई-I)

1. (a) Differentiate w.r.t. x : $\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}$.
(b) Differentiate $x^{1 / x}+(\log x)^{x}$ w.r.t. x.
(क) x के संदर्भ में विभेदित कीजिए:

$$
\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}} .
$$

(ख) x के संदर्भ में $x^{1 / x}+(\log x)^{x}$ को विभेदित कीजिए।
2. (a) If $u=\log \frac{x^{4}+y^{4}+x^{2} y^{2}}{x+y+\sqrt{x y}}$, prove that

$$
x \frac{d u}{d x}+y \frac{d u}{d y}=3
$$

(b) Find the area of the largest rectangle having the perimeter of 200 meters.
(क) यदि $u=\log \frac{x^{4}+y^{4}+x^{2} y^{2}}{x+y+\sqrt{x y}}$, सिद्ध कीजिए।

$$
x \frac{d u}{d x}+y \frac{d u}{d y}=3
$$

(ख) 200 मीटर परिमाप के सबसे बड़े आयात का क्षेत्रफल ज्ञात कीजिए।
3. (a) Evaluate $: \int \frac{x^{3}}{\left(1-x^{4}\right)^{2}} d x$.
(b) Evaluate $: \int_{5}^{6} \frac{2-x^{2}}{(x+3)(x-4)^{2}} d x$.
(क) मूल्यांकन कीजिए:

$$
\int \frac{x^{3}}{\left(1-x^{4}\right)^{2}} d x
$$

(ख) मूल्यांकन कीजिए:

$$
\int_{5}^{6} \frac{2-x^{2}}{(x+3)(x-4)^{2}} d x
$$

4. (a) Find the area under the curve, $y=\left(x^{2}+2\right)^{2}+2 x$, between the ordinates $x=0$ and $x=2$ and the x-axis.
(b) If the supply curve is $p=\sqrt{10+x}$ and the quantity sold in market is 6 units, find the producer's surplus.
(क) कोटि $x=0$ और $x=2$ तथा x-अक्ष के बीच $y=\left(x^{2}+2\right)^{2}+2 x$ वक्र के तहत क्षेत्रफल ज्ञात कीजिए।
(ख) यदि आपूर्ति वक्र $p=\sqrt{10+x}$ है तथा बाजार में बेची गई संख्या 6 इकाइयॉ हैं, तो उत्पादकों के अधिशेष को ज्ञात कीजिए।

UNIT-II (इकाई-II)

5. (a) If $2 X+3 Y=\left[\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right]$ and $3 X+2 Y=\left[\begin{array}{cc}-2 & 2 \\ 1 & -5\end{array}\right]$; find X and Y .
(b) Prove that : $\left[\begin{array}{lll}1 & a & a \\ a & 1 & a \\ a & a & 1\end{array}\right]=(2 a+1)(1-a)^{2}$.
(क) यदि $2 \mathrm{X}+3 \mathrm{Y}=\left[\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right]$ तथा $3 \mathrm{X}+2 \mathrm{Y}=\left[\begin{array}{cc}-2 & 2 \\ 1 & -5\end{array}\right]$; तो x और y को ज्ञात कीजिए।
(ख) सिद्ध कीजिए :

$$
\left[\begin{array}{lll}
1 & a & a \\
a & 1 & a \\
a & a & 1
\end{array}\right]=(2 a+1)(1-a)^{2} .
$$

6. (a) Solve the following system of equation, using determinants;

$$
\begin{aligned}
& x+2 y+3 z=6 \\
& 2 x+4 y+z=7 \\
& 3 x+2 y+9 z=14
\end{aligned}
$$

(b) If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then prove that $\mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}=0$, hence find A^{-1}.
(क) निर्धारकों का उपयोग करते हुए, समीकरणों की निम्नलिखित प्रणाली को हल कीजिए :

$$
\begin{aligned}
& x+2 y+3 z=6 \\
& 2 x+4 y+z=7 \\
& 3 x+2 y+9 z=14
\end{aligned}
$$

(ख) यदि $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, तब सिद्ध कीजिए

$$
\mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}=0 \text {, अतः } \mathrm{A}^{-1} \text { ज्ञात कीजिए। }
$$

7. (a) Using elementary row operation, find the inverse of the matrix;

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 1 & 2 \\
0 & 1 & 2
\end{array}\right]
$$

(b) Solve the following system of equation by matrix method;

$$
\begin{aligned}
& x-y-z=1 \\
& 2 x+y+z=2 \\
& x-2 y+z=4
\end{aligned}
$$

(क) प्रांरभिक पंक्ति ऑपरेशन का उपयोग करते हुए, आव्यूह का व्युत्क्रम ज्ञात कीजिए :

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 1 & 2 \\
0 & 1 & 2
\end{array}\right]
$$

(ख) आव्यूह विधि द्वारा समीकरण की निम्नलिखित प्रणाली को हल कीजिए :

$$
\begin{aligned}
& x-y-z=1 \\
& 2 x+y+z=2 \\
& x-2 y+z=4
\end{aligned}
$$

UNIT-III (इकाई-III)

8. Maximize $Z=4 x+9 y$. Graphically.

Subject to the constraints

$$
\begin{aligned}
& x+5 y \leq 200 \\
& 2 x+3 y \leq 134 \\
& x \geq 0, y \geq 0
\end{aligned}
$$

अधिकतम $\mathrm{Z}=4 x+9 y$. ग्राफिकली।
बशर्ते कि

$$
\begin{aligned}
& x+5 y \leq 200 \\
& 2 x+3 y \leq 134 \\
& x \geq 0, y \geq 0
\end{aligned}
$$

9. Solve the linear programming problems by using simplex method:

Maximize $Z=4 x-2 y-z$, subject to the constraints:

$$
\begin{aligned}
& x+y+z \leq 3 \\
& 2 x+2 y+z \leq 4 \\
& x-y \leq 0 \\
& \mathrm{x} \geq 0, \mathrm{y} \geq 0, \mathrm{z} \geq 0
\end{aligned}
$$

सरल विधि का उपयोग करके रैखिक प्रोग्रामिंग समस्याओं को हल कीजिए :
अधिकतम $\mathrm{Z}=4 x-2 y-z$
बशर्ते कि $x+y+z \leq 3$

$$
\begin{aligned}
& 2 x+2 y+z \leq 4 \\
& x-y \leq 0 \\
& \mathrm{x} \geq 0, \mathrm{y} \geq 0, \mathrm{z} \geq 0
\end{aligned}
$$

10. (a) Rahul deposited Rs. 20,000 in a bank for 2 years at 14% per annum compounded quarterly. Find the interest he will get at the time of maturity.
(b) Find the present value of an ordinary annuity of Rs. 100 p.a. for 20 years at 4% p.a.
(क) राहुल ने बैंक में 20,000 रु 2 साल के लिए 14% प्रति वर्ष तिमाही चक्रवृद्धि पर जमा किए। परिपक्वता के समय वह कितना ब्याज प्राप्त करेगा, ज्ञात कीजिए।
(ख) 4% प्रति वर्ष की दर से 20 वर्षों के लिए 100 रुपये प्रति वर्ष की सामान्य वार्षिकी का वर्तमान मूल्य ज्ञात कीजिए।
