

UNIT-II

3. (a) Prove that if P is a prime field, then either $P \cong z / p z$ or $P \cong Q$.
(b) Find the degree of the splitting field of the polynomial $\left(x^{3}-2\right)\left(x^{2}-4\right)$ over Q.
4. (a) Prove that a finite normal extension is a splitting field.
(b) Prove that of $\propto \in K / F$ is separable, then $F(\propto) / F$ is separable.
5. (a) Find the Galois group of $x^{4}-2$ over Q.
(b) Prove that the Galois group of $x^{n}-a \in F[x]$ is solvable.

UNIT-III

6. (a) Prove that if $T \in A_{F}(V)$ has all ch. roots in F, then T satisfies a polynomial of degree $\mathrm{n}=\operatorname{dim}_{\mathrm{F}}(\mathrm{V})$ over F.
(b) Let $T \in A_{F}(V)$ be such that $T^{m}=I$. Prove that if $\operatorname{ch}(\mathrm{F})=0$, then T is diagonalizable. $\left(\operatorname{dim}_{\mathrm{F}}(\mathrm{V})<\infty\right)$.
7. (a) Prove that invariants of a nilpotent linear transformation are unique.
(b) Prove that if $f(x) \in F[x]$, then the companion matrix $C(f(x))$ of $f(x)$ satisfies the polynomial $f(x)$.

UNIT-IV

8. (a) Let I be a left ideal of a ring R with unity. Prove that I is a direct sum and of R iff I is generated by an idempotent.
(b) Let R be a ring with unity. Prove that a left R-module is simple iff $M \cong R / I$ where I is a maximal left ideal of R .
9. (a) Prove that in an Artinian ring every nil left ideal is nilpotent.
(b) Prove that each ideal in a Noetherian ring contains a finite product of prime ideals.
10. (a) Let M be a left module over a Noetherian ring. Prove that every non-zero sub module of M contains a uniform module.
(b) Prove that over a PID, submodule of a finitely generated module is again finitely generated.
