M.Sc. (P) Mothematics

MDE/M-16

4028

Total Pages: 3

ADVANCED ABSTRACT ALGEBRA

Paper: I, MM-401

Time: Three Hours] [Maximum Marks: 80

Note: Attempt *five* questions in all, selecting at least *one* question from each section. All questions carry equal marks.

SECTION-I

- 1. (a) Prove that a group of order p^n has a composition series of length n. Also write down a composition series for the symmetric group S_A .
 - (b) Let A and B be subgroups of a group G such that $G = \langle A, B \rangle$. Prove that $[A, B] \Delta G$.
- 2. (a) Prove that subgroup and factor group of a nilpotent group are again nilpotent.
 - (b) Let A and B be normal subgroups of a group G such that both G/A and G/B are solvable. Prove that $G/(A \cap B)$ is solvable.

SECTION-II

- 3. (a) Let $F \subseteq K \subseteq L$ be fields. Prove that if $[K : F] < \infty$ and $[L : K] < \infty$, then $[L : F] < \infty$ and [L : F] = [L : K] [K : F].
 - (b) Prove that if α , $\beta \in K/F$ are algebraic of coprime degrees, then $[F(\alpha, \beta) : F] = [F(\alpha) : F] [F(\beta) : F]$.

4028/1,000/KD/1468

[P.T.O.

- (a) Find the degree of the splitting field of $(X^2 + 1)(X^4 - 2)$
- 9 Let F be a field such that $F^* = F\{0\}$ is a cyclic group (under multiplication). Prove that F is a finite field.
- S (a) Find the Galois group of $f(X) = (X^2 - 1)(X^3 - 2)$ over Q
- 9 Prove that the polynomial $X^5 - 9X + 3$ is not solvable by radicals over Q.

SECTION-III

- 9 (a) Let $T \in A_F(V)$ has all characteristic roots in F. Prove over F. that T satisfies a polynomial of degree $n = \dim_{\mathbf{F}}(V)$
- 9 Let $T \in A_F(V)$ be such that $T^2 = T$, $\dim_F(V) = n$. Prove that T is diagonalizable.
- .7 (a) similar iff they have the same invarianty. Prove that two nilpotent linear transformations on V are
- 9 a basis of V in which the matrix of T is C(p(X)). $T \in A(V)$ and V is a cyclic module relative to T, then \exists Prove that if $p(X) \in F[X]$ is the minimal polynomial of

SECTION-IV

- 00 (a) Prove that if R is a ring with unity, then $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}_{\mathbb{R}}, \mathbb{R}_{\mathbb{R}}) \cong \mathbb{R}$ as rings.
- 9 Prove that submodule of a completely reducible Rmodule M is a direct summand of M.
- 9. (a) Prove that every nil left ideal of a left Artinian ring is nilpotent.
- 9 Let a, b be elements of a Noetherian ring R with unity such that ab = 1. Prove that ba = 1.
- 4028/1,000/KD/1468

4028/1,000/KD/1468

w

- 10. (a) Prove that if I is a minimal left ideal of a ring R, then
- 6 Find the Abelian group generated by a and b, where 2a = 3b.
- either $I^2 = \{0\}$ or I is generated by an idempotent.