M.Sc (P) math

Roll No.

Total Pages: 03

DMDE/M-18 4028 ADVANCED ABSTRACT ALGEBRA MM-401

Time : Three Hours]

[Maximum Marks: 80

Note: Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Section I

- 1. (a) Prove that a group of order p^n (P is a prime and $n \ge 0$) has a composition series of length n.
 - (b) Let A and B be subgroups of a group G such that [A, B, B] = {e}. Prove that [A, B] is a Abelian subgroup of G.
- 2. (a) Prove that subgroup and a factor group of a nilpotent group are again nilpotent.
 - (b) Define the derived series {δ_i(G)}i ≥ 0 of a group G and prove that G is soluble iff ∃ an integer s ≥ 0 such that δ_k(G) = {e}.

(3-22/14)L-4028

- Prove that invariants of a nilpotent transformation 7. (a) are unique.
 - Let K be an entension of F. Prove that if (b) A, B \in F_n = M_n(F) are similar in K_n, then they are already similar in F_n .

Section IV

- Let I be a left ideal of a ring R with unity. Prove 8. (a) that I is a direct summand of R iff I is generated by an idempotent.
 - Let A and B be submodels of R-modules M and N (b) respectively prove that :

$$\frac{\mathbf{M} \times \mathbf{N}}{\mathbf{A} \times \mathbf{B}} \cong \frac{\mathbf{M}}{\mathbf{A}} \times \frac{\mathbf{N}}{\mathbf{B}}$$

Prove that in a Noetherian ring every nil ideal is 9. (a) nilpotent. Let N be a submodule of an R-module M such that (b)both N and M/N are Artinian R-module. Prove that M is an Artinian R-module. Prove that a submodule of a free module of rank n10. (a) over a PID is again free of rank $\leq n$.

Prove that the Abelian group G generated by x, y(b) such that 2x = 3y is cyclic.

3

600

(3-22/15)L-4028

Prove that if P is a prime of field, then either

(b) Find the degree of the splitting field of $(X^2 - 1)(X^2 - 2)(X^2 - 3)$ over Q.

Section II

 $P \cong Q$ or P = z/pz.

- (a) Prove that if $F^* = F'\{0\}$ is a cyclic group, then F 4. is a finite field.
 - Prove that a finite normal extension is the splitting (b) field of some polynomial.
- Find the Galois group of $X^4 2$ over Q. 5. (a)
 - Prove that the Galois group of $X^n a \in F[X]$ is (b) soluble.

Section III

Prove that if $T \in A(V)$ has all its ch. roots in F, 6. (a) then there is a basis of V in which the matrix of T is triangular.

(b) Prove that the matrix
$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$
 is nilpotent and

find its invariants.

L-4028

3. (a)

2