M.Sc (P) math

Roll No.

DMDE/M-18

ADVANCED ABSTRACT ALGEBRA MM-401

Time : Three Hours]
[Maximum Marks : 80
Note: Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Section I

1. (a) Prove that a group of order p^{n} (P is a prime and $n \geq 0$) has a composition series of length n.
(b) Let A and B be subgroups of a group G such that $[A, B, B]=\{e\}$. Prove that $[A, B]$ is a Abelian subgroup of G.
2. (a) Prove that subgroup and a factor group of a nilpotent group are again nilpotent.
(b) Define the derived series $\left\{\delta_{i}(\mathrm{G})\right\} i \geq 0$ of a group G and prove that G is soluble iff \exists an integer $s \geq 0$ such that $\delta_{k}(G)=\{e\}$.

Section II

3. (a) Prove that if P is a prime of field, then either $\mathrm{P} \cong \mathrm{Q}$ or $\mathrm{P}=z / p z$.
(b) Find the degree of the splitting field of $\left(X^{2}-1\right)\left(X^{2}-2\right)\left(X^{2}-3\right)$ over Q.
4. (a) Prove that if $F^{*}=F^{\prime}\{0\}$ is a cyclic group, then F is a finite field.
(b) Prove that a finite normal extension is the splitting field of some polynomial.
5. (a) Find the Galois group of $X^{4}-2$ over Q.
(b) Prove that the Galois group of $\mathrm{X}^{n}-a \in \mathrm{~F}[\mathrm{X}]$ is soluble.

Section III

6. (a) Prove that if $T \in A(V)$ has all its ch. roots in F, then there is a basis of V in which the matrix of T is triangular.
(b) Prove that the matrix $\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0\end{array}\right)$ is nilpotent and find its invariants.
7. (a) Prove that invariants of a nilpotent transformation
(b) Let K be an entension of F . Prove that if $A, B \in \mathrm{~F}_{n}=\mathrm{M}_{n}(\mathrm{~F})$ are similar in K_{n}, then they are already similar in F_{n}.

Section IV

8. (a) Let I be a left ideal of a ring R with unity. Prove that I is a direct summand of R iff I is generated by an idempotent.
(b) Let A and B be submodels of R-modules M and N respectively prove that :

$$
\frac{M \times N}{A \times B} \cong \frac{M}{A} \times \frac{N}{B}
$$

9. (a) Prove that in a Noetherian ring every nil ideal is nilpotent.
(b) Let N be a submodule of an R -module M such that both N and M / N are Artinian R -module. Prove that M is an Artinian R -module.
10. (a) Prove that a submodule of a free module of rank n over a PID is again free of rank $\leq n$.
(b) Prove that the Abelian group G generated by x, y such that $2 x=3 y$ is cyclic.
